Jump to content

Rule of inference

From Wikipedia, the free encyclopedia
(Redirected from Rules of inference)

In the philosophy of logic and logic, specifically in deductive reasoning, a rule of inference, inference rule or transformation rule is a logical form consisting of a function which takes premises, analyzes their syntax, and returns a conclusion (or conclusions).

For example, the rule of inference called modus ponens takes two premises, one in the form "If p then q" and another in the form "p", and returns the conclusion "q". The rule is valid with respect to the semantics of classical logic (as well as the semantics of many other non-classical logics), in the sense that if the premises are true (under an interpretation), then so is the conclusion.

Typically, a rule of inference preserves truth, a semantic property. In many-valued logic, it preserves a general designation. But a rule of inference's action is purely syntactic, and does not need to preserve any semantic property: any function from sets of formulae to formulae counts as a rule of inference. Usually only rules that are recursive are important; i.e. rules such that there is an effective procedure for determining whether any given formula is the conclusion of a given set of formulae according to the rule. An example of a rule that is not effective in this sense is the infinitary ω-rule.[1]

Popular rules of inference in propositional logic include modus ponens, modus tollens, and contraposition. First-order predicate logic uses rules of inference to deal with logical quantifiers.

Definition

[edit]

A rule of inference is a way of drawing a conclusion from a set of premises.[2] Also called inference rule and transformation rule,[3] it is a norm of correct inferences that can be used to guide reasoning, justify conclusions, and criticize arguments. As part of deductive logic, rules of inference are argument forms that preserve the truth of the premises, meaning that the conclusion is always true if the premises are true.[a] An inference is deductively correct or valid if it follows a rule of inference. Whether this is the case depends only on the form or syntactical structure of the premises and the conclusion. As a result, the actual content or concrete meaning of the statements does not affect validity. For instance, modus ponens is a rule of inference that connects two premises of the form "if p then q" and "p" to the conclusion "q", where p and q stand for statements. Any argument with this form is valid, independent of the specific meanings of p and q, such as the argument "if it is raining, then the ground is wet; it is raining; therefore, the ground is wet". In addition to modus ponens, there are many other rules of inference, such as modus tollens, disjunctive syllogism, hypothetical syllogism, constructive dilemma, and destructive dilemma.[5]

Rules of inference belong to logical systems and distinct logical systems may use different rules of inference. For example, universal instantiation is a rule of inference in the system of first-order logic but not in propositional logic.[6] Rules of inference play a central role in proofs as explicit procedures for arriving at a new line of a proof based on the preceding lines. Proofs involve a series of inferential steps and often use various rules of inference to establish the theorem they intend to demonstrate.[7] As standards or procedures governing the transformation of symbolic expressions, rules of inference are similar to mathematical functions taking premises as input and producing a conclusion as output. According to one interpretation, rules of inference are inherent in logical operators[b] found in statements, making the meaning and function of these operators explicit without adding any additional information.[9]

Logicians distinguish two types of rules of inference: rules of implication and rules of replacement.[c] Rules of implication, like modus ponens, operate only in one direction, meaning that the conclusion can be deduced from the premises but the premises cannot be deduced from the conclusion. Rules of replacement, by contrast, operate in both directions, stating that two expressions are equivalent and can be freely replaced with each other. In classical logic, for example, a proposition (p) is equivalent to the negation[d] of its negation (¬¬p).[e] As a result, one can infer one from the other in either direction, making it a rule of replacement. Other rules of replacement include De Morgan's laws as well as the commutative and associative properties of conjunction and disjunction. While rules of implication apply only to complete statements, rules of replacement can be applied to any part of a compound statement.[12]

Standard form

[edit]

In formal logic (and many related areas), rules of inference are usually given in the following standard form:

  Premise#1
  Premise#2
        ...
  Premise#n   
  Conclusion

This expression states that whenever in the course of some logical derivation the given premises have been obtained, the specified conclusion can be taken for granted as well. The exact formal language that is used to describe both premises and conclusions depends on the actual context of the derivations. In a simple case, one may use logical formulae, such as in:

This is the modus ponens rule of propositional logic. Rules of inference are often formulated as schemata employing metavariables.[13] In the rule (schema) above, the metavariables A and B can be instantiated to any element of the universe (or sometimes, by convention, a restricted subset such as propositions) to form an infinite set of inference rules.

A proof system is formed from a set of rules chained together to form proofs, also called derivations. Any derivation has only one final conclusion, which is the statement proved or derived. If premises are left unsatisfied in the derivation, then the derivation is a proof of a hypothetical statement: "if the premises hold, then the conclusion holds."

Example: Hilbert systems for two propositional logics

[edit]

In a Hilbert system, the premises and conclusion of the inference rules are simply formulae of some language, usually employing metavariables. For graphical compactness of the presentation and to emphasize the distinction between axioms and rules of inference, this section uses the sequent notation () instead of a vertical presentation of rules. In this notation,

is written as .

The formal language for classical propositional logic can be expressed using just negation (¬), implication (→) and propositional symbols. A well-known axiomatization, comprising three axiom schemata and one inference rule (modus ponens), is:

(CA1) ⊢ A → (BA)
(CA2) ⊢ (A → (BC)) → ((AB) → (AC))
(CA3) ⊢ (¬A → ¬B) → (BA)
(MP) A, ABB

It may seem redundant to have two notions of inference in this case, ⊢ and →. In classical propositional logic, they indeed coincide; the deduction theorem states that AB if and only if ⊢ AB. There is however a distinction worth emphasizing even in this case: the first notation describes a deduction, that is an activity of passing from sentences to sentences, whereas AB is simply a formula made with a logical connective, implication in this case. Without an inference rule (like modus ponens in this case), there is no deduction or inference. This point is illustrated in Lewis Carroll's dialogue called "What the Tortoise Said to Achilles",[14] as well as later attempts by Bertrand Russell and Peter Winch to resolve the paradox introduced in the dialogue.

For some non-classical logics, the deduction theorem does not hold. For example, the three-valued logic of Łukasiewicz can be axiomatized as:[15]

(CA1) ⊢ A → (BA)
(LA2) ⊢ (AB) → ((BC) → (AC))
(CA3) ⊢ (¬A → ¬B) → (BA)
(LA4) ⊢ ((A → ¬A) → A) → A
(MP) A, ABB

This sequence differs from classical logic by the change in axiom 2 and the addition of axiom 4. The classical deduction theorem does not hold for this logic, however a modified form does hold, namely AB if and only if ⊢ A → (AB).[16]

Admissibility and derivability

[edit]

In a set of rules, an inference rule could be redundant in the sense that it is admissible or derivable. A derivable rule is one whose conclusion can be derived from its premises using the other rules. An admissible rule is one whose conclusion holds whenever the premises hold. All derivable rules are admissible. To appreciate the difference, consider the following set of rules for defining the natural numbers (the judgment asserts the fact that is a natural number):

The first rule states that 0 is a natural number, and the second states that s(n) is a natural number if n is. In this proof system, the following rule, demonstrating that the second successor of a natural number is also a natural number, is derivable:

Its derivation is the composition of two uses of the successor rule above. The following rule for asserting the existence of a predecessor for any nonzero number is merely admissible:

This is a true fact of natural numbers, as can be proven by induction. (To prove that this rule is admissible, assume a derivation of the premise and induct on it to produce a derivation of .) However, it is not derivable, because it depends on the structure of the derivation of the premise. Because of this, derivability is stable under additions to the proof system, whereas admissibility is not. To see the difference, suppose the following nonsense rule were added to the proof system:

In this new system, the double-successor rule is still derivable. However, the rule for finding the predecessor is no longer admissible, because there is no way to derive . The brittleness of admissibility comes from the way it is proved: since the proof can induct on the structure of the derivations of the premises, extensions to the system add new cases to this proof, which may no longer hold.

Admissible rules can be thought of as theorems of a proof system. For instance, in a sequent calculus where cut elimination holds, the cut rule is admissible.

See also

[edit]

References

[edit]

Notes

[edit]
  1. ^ Non-deductive arguments, by contrast, support the conclusion without ensuring that it is true, such as inductive and abductive reasoning.[4]
  2. ^ Logical operators or constants are expressions used to form and connect propositions, such as not, or, and if...then....[8]
  3. ^ According to a narrow definition, rules of inference only encompass rules of implication but do not include rules of replacement.[10]
  4. ^ Logicians use the symbols ¬ or ~ to express negation.
  5. ^ Rules of replacement are sometimes expressed using a double semi-colon. For instance, the double negation rule can be written as p :: ¬¬p.[11]

Citations

[edit]
  1. ^ Boolos, George; Burgess, John; Jeffrey, Richard C. (2007). Computability and logic. Cambridge: Cambridge University Press. p. 364. ISBN 978-0-521-87752-7.
  2. ^
  3. ^
  4. ^ Hintikka & Sandu 2006, pp. 13–14
  5. ^
  6. ^
  7. ^
  8. ^ Hurley 2016, pp. 238–239
  9. ^
  10. ^ Arthur 2016, pp. 165–166
  11. ^ Hurley 2016, pp. 323–252
  12. ^
  13. ^ John C. Reynolds (2009) [1998]. Theories of Programming Languages. Cambridge University Press. p. 12. ISBN 978-0-521-10697-9.
  14. ^ Kosta Dosen (1996). "Logical consequence: a turn in style". In Maria Luisa Dalla Chiara; Kees Doets; Daniele Mundici; Johan van Benthem (eds.). Logic and Scientific Methods: Volume One of the Tenth International Congress of Logic, Methodology and Philosophy of Science, Florence, August 1995. Springer. p. 290. ISBN 978-0-7923-4383-7. preprint (with different pagination)
  15. ^ Bergmann, Merrie (2008). An introduction to many-valued and fuzzy logic: semantics, algebras, and derivation systems. Cambridge University Press. p. 100. ISBN 978-0-521-88128-9.
  16. ^ Bergmann, Merrie (2008). An introduction to many-valued and fuzzy logic: semantics, algebras, and derivation systems. Cambridge University Press. p. 114. ISBN 978-0-521-88128-9.

Sources

[edit]